
Future Innovators
Workshop Handbook

Prepared by IEEE-HKN Lambda Zeta and the IEEE UNT Student Branch

For comments, questions, or suggestions, contact Revision Date: November 13, 2021Nicholas Chiapputo at chiapputo@ieee.org.

mailto:chiapputo@ieee.org

i
Welcome to the Future Innovators Workshop

Welcome to the Future Innovators Workshop (FIW)! FIW is designed, developed, and
hosted by IEEE student members at the University of North Texas. Our goal is to introduce
K-12 students to the wide world of programming and electronics by providing Arduino
electronics kits. Each session of FIW provides students with a one-hour workshop where
we introduce the components in the kit and walk students through a complete project.
After the workshop, we encourage students to continue to explore with their kit and make
new and exciting projects!
This handbook serves as a first introduction to electronics and Arduino programming to
get students up and running. Our aim is to include enough information to quickly form
a basic foundation for students to begin exploring. We highly encourage students and
parents alike to continue to research and learn about any topics found in this handbook.
We also encourage contacting us for any help or questions in getting started or clari-
fications needed in this handbook. This handbook is expected to be updated over time
with more projects and learning material, so check back every month or two and look at
the revision table for new updates!
The first section introduces the Arduino, the electronic components in the kit, and the
basics of electronics such as voltage, current, resistance. The following sections in-
clude projects to give students ideas on what they can make. The projects are sorted by
di�culty level starting with basic electronics and increasing into Arduino programming
and then more advanced electronics and programming that requires some theory back-
ground. Our goal with this handbook is to give students some direction and a starting
point to continue learning and exploring well after the conclusion of the workshop.

ii
Revision History

Changes from February 2021 to November 2021

Update title page logos and contact email . iAdded Welcome to the Future Innovators Workshop section iExpanded Arduino information. Added Uno description/breakdown 1Expanded Arduino IDE information. Added Figure 1.2 and breakdown 3Added online oscilloscope introduction . 9Added integrated circuit (IC) introduction . 11Clarified pushbutton LED instructions . 12Clarified tunable LED brightness instructions 14Added mini piano project . 22Added basic logic gate introduction project 28Fixed TFT Etch-a-Sketch circuit diagram . 43Added Pong project . 47

CONTENTS iii

Contents
Welcome to the Future Innovators Workshop . i
Revision History . ii

1 Introduction 1
1.1 Arduino . 1
1.2 Arduino IDE . 3
1.3 Breadboard . 6
1.4 Voltage . 7
1.5 Current . 8
1.6 Resistance . 8
1.7 Oscilloscope . 9
1.8 Integrated Circuit (IC) . 11

2 Level 1 Projects 12
2.1 Pushbutton LED . 12
2.2 Tunable LED Brightness . 14

3 Level 2 Projects 16
3.1 Basic Buzzer . 16
3.2 Programmable Buzzer . 18
3.3 Mini Piano . 22
3.4 Logic Gates . 28

4 Level 3 Projects 31
4.1 Ultrasonic Security System . 31

5 Level 4 Projects 40
5.1 TFT Etch-a-Sketch . 40
5.2 Pong . 47

CHAPTER 1. INTRODUCTION 1

1 Introduction

1.1 Arduino

Arduino is an open-source electronics hardware and software company that designs
many single-board microcontrollers. A microcontroller is a small computer that has a
microprocessor, memory, and programmable input/output peripherals. Microcontrollers
are used in many electronic and automated products such as remote controls, e-readers,
toys, appliances, power tools, and so much more.
Arduino’s goal is to make easy-to-use tools for learning and teaching circuits and pro-
gramming with a low-cost system. They are one of the leaders in do-it-yourself (DIY)
electronics. Because of their easy-to-use development environment, their microcon-
trollers are one of the most popular starting points for getting into the world of program-
ming and electronics. Their most popular microcontroller, the Arduino Uno (Figure 1.1),
is the one included in your kit.

Processor

Analog Ports

Digital Ports

Power Ports

USB Connector

Power Connector

Figure 1.1: An Arduino Uno.

CHAPTER 1. INTRODUCTION 2
Arduino Uno

Processor
The brain of the Arduino Uno is in the microprocessor. This processor (specifically, an
ATmega328p) is the small integrated circuit (IC) chip located in the center of the board.
When you write a program, this is the part that will execute all of the instructions that
you give it.
Ports
To measure input signals or to send output signals, the Arduino Uno has multiple ports
along the edge of the board that are connected directly to the microprocessor. These
ports are in the square holes where you can plug in your jumper wires to connect to an
external circuit. They allow the Uno to control a circuit or read in information from the
circuit using voltage values.
Of these ports, 13 are digital and 6 are analog. The digital ports are 1 through 13 and
the analog ports are labeled “A0” through “A5”. Digital ports can only read in high or
low values (0 V and 5 V, respectively) while analog ports can read and write any voltage
value between 0 V and 5 V.
Some of the digital ports also have other functionalities. The digital ports with a “~”
next to the number can also produce pulse width modulation (PWM) signals. This type
of signal is a square wave that is high (at 5 V) for a percentage of the time (known as
the duty cycle). Digital ports 0 and 1 are by default mapped to the serial communication
that occurs over USB to your computer. Port 0 receives the data from the computer and
port 1 transmits it.
Next to the analog ports are a number of ports used for power. In particular, there are
two ports labeled “GND” (ground), one port labeled “5V”, and one port labeled “3.3V”.
The GND ports are used as a reference voltage, or 0 V, for your circuits while the other
two ports supply 5 V and 3.3 V, respectively. Usually, you will connect just the 5 V and
GND ports to your circuit to power it, though sometimes you will need to use the 3.3-V
port for some electronic components that will break if you supply too high of a voltage.
USB
In order to program the Arduino Uno and communicate with it, you need to connect it to

CHAPTER 1. INTRODUCTION 3
a computer using a USB cable. In your kit, the Uno comes with a blue USB cable. The
large end (USB type B) connects to the large port on the end of the Uno while the smaller
end (USB type A) connects to a USB port on your computer.
Power
While the USB port does supply power to the Arduino Uno, you can also power it using an
external battery. You can connect a 9-V battery and plug it into the barrel jack connector
at the end of the board. On the Uno, there is a voltage regulator that will step down the
9-V input to 5 V and 3.3 V in order to protect the components on the board.
Additional Resources

• Arduino Website https://www.arduino.cc/

• Arduino Tutorials https://www.arduino.cc/en/Tutorial/HomePage/

https://www.arduino.cc/en/Guide/ArduinoUno/

• Arduino Uno Projects https://create.arduino.cc/projecthub?by=part&part_

id=8233

1.2 Arduino IDE

The Arduino Integrated Development Environment (IDE) is an application that allows
you to write code to execute on an Arduino microcontroller or other Arduino-compatible
devices (such as ESP32). The IDE can be downloaded from Arduino’s website (https:
//www.arduino.cc/en/software/) by clicking on the download link appropriate for the
operating system you are using1. Alternatively, Windows users can use the Windows app
store to download the software.

1For Chromebook users, you must install the Arduino Create for Education app from the Chrome storeor use the Arduino Web Editor.

https://www.arduino.cc/
https://www.arduino.cc/en/Tutorial/HomePage/
https://www.arduino.cc/en/Guide/ArduinoUno/
https://create.arduino.cc/projecthub?by=part&part_id=8233
https://create.arduino.cc/projecthub?by=part&part_id=8233
https://www.arduino.cc/en/software/
https://www.arduino.cc/en/software/

CHAPTER 1. INTRODUCTION 4

Figure 1.2: The Arduino Integrated Development Environment (IDE).

Figure 1.2 shows the Arduino IDE. The IDE contains a code editor; an output console; a
button to verify the code; and a button to upload the executable code to the connected
Arduino. In the code editor, you can write and edit the code that will be executed on your
Arduino. The output console will show any error messages when verifying or uploading
your code to the Arduino. This can be used to debug any problems in the code.
Built-in Examples

The IDE comes with some basic examples that can be found through the menu bar in the
File > Examples section. To test that the connection to your Arduino is working, you
can use the Blink example under 01.Basics that requires no circuit to function. This
example will blink the on-board LED labeled L on your Arduino Uno. This is the default
program that comes loaded onto your Arduino Uno from the factory, so you may notice

CHAPTER 1. INTRODUCTION 5
that the LED is already blinking when you plug it in to your computer. There are many
other examples built into the IDE as well as some that come when you install third-party
libraries. These examples are usually well-documented so that you can read through
them and understand exactly how they work.
Verify Your Code

The verify button (with the check mark) is used to compile the code you have written in
the editor and make sure that the syntax (how it is written) is correct and will execute on
your board. However, this doesn’t check that there won’t be any errors while the code
is running (for example, that you added instead of subtracted). A successful verification
will display a message in the output console that begins with Sketch uses.... This tells
you how much of your program memory (also known as flash memory) is taken up by
the program you have written. This is a very important part of developing for microcon-
trollers as they don’t have very much memory compared to your computer! The message
will also tell you how much of your dynamic memory (also known as SRAM) is used by
your global variables. If there are any errors, the top of the output console will turn or-
ange, an error message will appear in the console, and the line where the error occurred
will be highlighted in orange in the code editor. If you can’t figure out what the error
message means, look to the internet!
Upload Your Code

If you have verified your code and the IDE recognizes your device, you’re ready to upload
the code to the device. The upload button (with the right arrow) is used to upload the
code to your device. This button will also verify before it uploads the code, but it is
best practice to manually verify before you click the upload button. If the upload is
successful, the top bar of the output console will read “Done uploading.” and the code
will be executing on your device.
Connecting a Device

If your device is not automatically recognized by the IDE after plugging it in to the com-
puter, you must manually select the port. To find the port your Arduino is connected
to on Windows, open Device Manager, expand the Ports (COM & LPT) section, and look

CHAPTER 1. INTRODUCTION 6
for an item that either has “Arduino” or contains “CH340” (this is the serial communi-
cation chip many Arduino clones use). The port number will look like COMxx. This is the
port you will select in the IDE. For Mac, open a terminal, type ls /dev/*, and note the
port number listed for either /dev/tty.usbmodem* or /dev/tty.usbserial*. For Linux,
open a terminal, type ls /dev/tty*, and note the port number listed for /dev/ttyUSB* or
/dev/ttyACM*. If you are not able to find the port your device is connected to, you may
need to install the drivers. Some computers do not have the CH340 drivers installed
by default or with the Arduino IDE. To download and install them, follow the guide at
https://learn.sparkfun.com/tutorials/how-to-install-ch340-drivers.
Once you have found the port your device is connected to, select it in the menu option
Tools > Port and choose the serial port that you just found in the previous step. Make
sure to also tell the IDE that you are using an Arduino Uno by going into the menu bar
and selecting Tools > Board > Arduino AVR Boards > Arduino Uno.
Saving Your Code

If you have modified the example code or written your own code, you will need to save
the file somewhere on your computer. Arduino script files are saved in .ino files. While
Arduino code is written in C++, these .ino files tell the Arduino IDE to treat them a little
di�erently when compiling. When saving the .ino files, they must have the same name
as the folder that they’re in.

1.3 Breadboard

A breadboard is a solderless device with a plastic exterior, numerous openings and inter-
nal metal strips that accept many di�erent electrical components. It is used for proto-
typing or creating early samples/products/models with the key benefit that it is reusable
and allows for easy modification of circuits by plugging and unplugging components.
Internally, the outer power rail columns are wired together and the inner rows are wired
together (see Figure below for internal connections). Components that are connected in
the circuit diagram are inserted into the same row of the breadboard. The large space in
the center is built for integrated circuit (IC) chips to straddle so each pin is connected
to a di�erent row.

https://learn.sparkfun.com/tutorials/how-to-install-ch340-drivers

CHAPTER 1. INTRODUCTION 7

Figure 1.3: Solderless breadboard and internal connections.

It is important to remember how the breadboard rows and columns are connected as it
will impact our circuits moving forward. To utilize the breadboard, push the metal legs
of the components firmly into the opening. You can test if the component is secured
by very lightly pulling up on the component. Another important thing to consider when
inserting components into the breadboard is the orientation of the component.
IMPORTANT: For safety, disconnect or turn o� the power supply prior to adding or
removing any components from the breadboard.

1.4 Voltage

Voltage represents the potential electrical di�erence between two points. Voltage is the
pressure that causes the flow of electric current in a circuit. The mechanical equivalent
for voltage would be pressure that pushes water through a pipe.
Voltage is measured in the units of volts, named after the Italian physicist Alessandro
Volta. Volts are identified by the symbol V.

CHAPTER 1. INTRODUCTION 8
1.5 Current

Current is the rate of flow of electrons in a circuit. The mechanical equivalent for current
would be the amount of water passing through a pipe. It is important to know that
current flows from a point of higher potential energy to a point of lower potential energy
or current follows the path of least resistance in a circuit. Current can be thought of as
water flowing from a higher elevation to a lower elevation.
The units of current are Amperes, named after French mathematician and physicist Andre-
Marie Ampere. Amperes is often abbreviated to Amps or A.

1.6 Resistance

Resistors are an electronic component that limits or resists the flow of electrons through
a circuit. Resistors have a fixed electrical resistance value called ohms, with the symbol
Ω. In our mechanical analogy, resistors represent the size of the pipe which limits the
amount of water that can pass through it.

Figure 1.4: Resistor Color Code Chart

The resistance value of the resistors can be identified by the colored bands on the body
of the resistor.

CHAPTER 1. INTRODUCTION 9
1.7 Oscilloscope

An oscilloscope is an electronic test instrument that measures and displays voltage over
time. Engineers commonly use oscilloscopes to debug circuits to either find problems
or to validate that a circuit is working as intended. The display of an oscilloscope plots
the voltage on a 2-dimensional graph with the x-axis (horizontal) being time and the
y-axis (vertical) being voltage. Oscilloscopes can sometimes be combined with function
generators (equipment that can generate arbitrary waveforms and signals) and power
supplies to form what are known as test benches. These test benches are all-in-one
instruments for testing and designing circuits.

Figure 1.5: The online Arduino oscilloscope at https://ieeeunt.org/lco/.

Typically, these oscilloscopes and test benches can be very expensive and cumber-
some. We have created a simple, free-to-use, browser-based Arduino oscilloscope that
is hosted on our website at https://ieeeunt.org/lco/ and shown in Figure 1.5. This
oscilloscope relies on the Serial API developed by Google Chrome and as such, can cur-
rently only be used on Chrome-based browsers such as Vivaldi and Google Chrome. If
you want to check if your browser is supported, open the page and the “Channel Data”
text box in the bottom left will display “Serial API found!” if your browser is supported.
In order to use the oscilloscope, you must download the .ino Arduino script by clicking
on the “Download scope.ino” button on the web page. This script will read the analog

https://ieeeunt.org/lco/
https://ieeeunt.org/lco/

CHAPTER 1. INTRODUCTION 10
voltage (over the 0-V to 5-V range) from the analog ports “A0” and “A1” and digital
inputs (either 0 or 1, HIGH or LOW) for the remaining analog ports “A2” through “A5”
and for the digital ports “2” through “13”.
To run the script on your Arduino Uno, first load the script into the Arduino IDE and
upload it to your Arduino Uno2. To test the analog oscilloscope, a simple circuit can
be built using only a potentiometer as shown in Figure 1.6. In this circuit, the voltage
read into the first channel through “A0” can be adjusted using the potentiometer. This
reading will be reflected in the analog oscilloscope on the web page. To test the digital
logic analyzer on the page, buttons or switches can be connected to the digital ports and
switched or pressed on and o�.

Figure 1.6: A basic circuit to showcase the analog functionality of the online oscilloscope.

On the page beneath the two plots are four other panels. The first and third panels
both have two sliders that control the viewing window on the analog and digital views,
respectively. Both panels also have two buttons to freeze only the analog or digital view
or freeze both views.

2The Arduino script has not been tested on devices other than the Arduino Uno. Because it usesregister-level programming to maximize the sampling rate, it may not be portable to other devices.

CHAPTER 1. INTRODUCTION 11
The second panel has two controls to output sound from the left and right channels out
of your computer. Here, you can select di�erent output waveforms (sine, square, saw-
tooth, and triangle) and the frequency, or tone, of the output waveform for each channel
separately. By plugging the 3.5-mm audio cable from the computer into the audio jack
included in the FIW kit, you can use this audio output as a basic function generator for
your circuits. Remember though, that the output from your computer jack oscillates be-
tween a positive and negative voltage and an Arduino can only handle positive voltage
between 0 V and 5 V. So you will need to build a simple circuit to either rectify the voltage
(i.e., remove the negative component), or add a DC o�set to increase the voltage so that
the lowest point is at or above 0 V and the highest point is at or below 5 V.

1.8 Integrated Circuit (IC)

An integrated circuit (IC) is an electronic circuit that is formed on a small piece of semi-
conductor material. An IC is housed inside a plastic enclosure with pins connecting to
the internal circuitry. An IC performs the same function as a larger circuit that was made
from individual components. Each IC has an indentation to signify the ‘top’ or ‘starting
pin’ on the chip. Pin numbering on ICs begins with pin 1 on the top left of the chip and
continues in a ‘U’ shape as seen in Figure 1.7.

Figure 1.7: 8-pin and 14-pin IC chip outline.
Every chip has a corresponding pinout diagram to explain how to connect IC to the rest
of your circuit. All chips need a supply of power and ground in order to properly function.

CHAPTER 2. LEVEL 1 PROJECTS 12

2 Level 1 Projects

2.1 Pushbutton LED

Parts Required
• 1x Arduino + USB Cable
• 2x Wires
• 1x Breadboard
• 1x LED
• 1x 330-Ω Resistor
• 1x Pushbutton

Steps
1. Place the pushbutton so that it straddles the river on the breadboard. The legs of

the pushbutton should be bending so that they are pointing perpendicular (away
from) the river.

2. Place the resistor so that one leg is in the positive power rail of the breadboard.
Place the other leg in the same row as one of the legs of the pushbutton.

3. Place the LED so that the anode (long leg) is in the same row as the other leg of
the pushbutton and the cathode (short leg) is in the negative power rail of the
breadboard.

4. To power the circuit, take the first wire and plug one end into the “5V” port on the
Arduino. Place the other end into the positive power rail on the breadboard.

5. To complete the circuit, take the second wire and plug one end into the “GND” port
on the Arduino. Place the other end into the negative power rail on the breadboard.

6. Plug the Arduino into your computer’s USB port to turn power on. The LED should
remain o� by default. To turn the LED on, press and hold the pushbutton.

CHAPTER 2. LEVEL 1 PROJECTS 13
Circuit

Figure 2.1: Circuit representation for the pushbutton LED project.

CHAPTER 2. LEVEL 1 PROJECTS 14
2.2 Tunable LED Brightness

Parts Required
• 1x Arduino + USB Cable
• 3x Wires
• 1x Breadboard
• 1x LED
• 1x 330-Ω Resistor
• 1x Potentiometer

Steps
1. Place the potentiometer so that the three pins are all in separate rows on the bread-

board. Using the dial potentiometer, you may need to place potentiometer at an
angle.

2. Place the LED so that the long leg (the anode) is in a row by itself and the short leg
(the cathode) is in the same row as the middle pin on the potentiometer.

3. Place the resistor so that one leg is in the negative power rail column (next to the
blue line) and the other leg is in the same row as the long leg on the LED.

4. Place Wires:
a) Place a wire with one end on the Arduino in the port labeled “5V”. This will

provide power to the circuit. Place the other end of the wire into a row with
the leftmost pin of the potentiometer.

b) Place a second wire and place one end in the negative power rail column (next
to the blue line) and place the other end on the Arduino in the remaining port
with the “GND” label.

c) Take a third wire with one end in the negative power rail and the other end in
the same row as the rightmost pin of the potentiometer.

5. Plug the Arduino into your computer’s USB port to turn power on. Adjust the po-
tentiometer to change the LEDs brightness. Turning it toward the left will make the
LED dimmer until it turns o�. Turning it to the right will make the LED increase in
brightness.

CHAPTER 2. LEVEL 1 PROJECTS 15
Circuit

Figure 2.2: Circuit representation for the tunable LED brightness project.

CHAPTER 3. LEVEL 2 PROJECTS 16

3 Level 2 Projects

3.1 Basic Buzzer

Parts Required
• 1x Arduino + USB Cable
• 2x Wires
• 1x Breadboard
• 1x Buzzer

Steps
1. Place the pushbutton so that it straddles the river on the breadboard. The legs of

the pushbutton should be bending so that they are pointing perpendicular (away
from) the river.

2. Place the buzzer so that the long leg is in the same row as one of the legs of the
pushbutton. Placing it further away from the pushbutton will make it easier to place
wires later as the buzzer covers most of the row.

3. To power the circuit, take the first wire and plug it into the “5V” port on the Arduino.
Place the other end of the wire in the same row as the empty leg above or below
the buzzer, depending on where you placed the buzzer.

4. To complete the circuit, take the second wire and plug it into the same row as the
short leg of the buzzer (the one not connected to the pushbutton).

5. To turn the buzzer on, press and hold the pushbutton. You should hear a loud,
high-pitched sound. To change the tone, follow the Programmable Buzzer project
example in Chapter 3.2.

CHAPTER 3. LEVEL 2 PROJECTS 17
Circuit

Figure 3.1: Circuit representation for the basic buzzer project.

CHAPTER 3. LEVEL 2 PROJECTS 18
3.2 Programmable Buzzer

Parts Required
• 1x Arduino + USB Cable
• 2x Wires
• 1x Breadboard
• 1x Pushbutton
• 1x Buzzer

Steps
• Building the Circuit

1. Place the pushbutton so that it straddles the river on the breadboard. The legs
of the pushbutton should be bending so that they are pointing perpendicular
(away from) the river.

2. Place the buzzer so that the long leg is in the same row as one of the legs
of the pushbutton. Placing it further away from the pushbutton will make it
easier to place wires later as the buzzer covers most of the row.

3. Take the first wire and plug one end into the Arduino port labeled “9”. This is a
digital output port with PWM capability. Place the other end of the wire in the
same row as the empty leg of the pushbutton. Remember that the legs of the
pushbutton are connected across the ravine and the legs next to each other
are not electrically connected.

4. To complete the circuit, take the second wire and plug it into the “GND” port
on the Arduino. Place the other end of the wire into the same row as the short
pin on the buzzer.

5. You shouldn’t hear anything from the buzzer just yet. To configure how the
buzzer will work, we need to write the program using the Arduino IDE and
upload it onto the Arduino.

• Writing the Program

1. The script for this program is found below in the Program section. We will
walk through the steps to recreate this script in your editor. First, open up the
Arduino IDE on your computer. Create a new sketch with Ctrl+N.

CHAPTER 3. LEVEL 2 PROJECTS 19
2. In the new script, we need to define the port we have connected the buzzer

to. In the previous steps, we connected it to pin 9, so we will define that with
the line const uint8_t buzzer = 9; at the top of the file on line 1.

3. In the setup function, we need to tell the Arduino that our buzzer pin will be
used as an output to send a signal out from the Arduino. To do this, we use
the pinMode function. The first argument is the port we are using, buzzer, and
the second argument sets the mode for the pin. In this case, we are using the
buzzer pin as an output, so we write the line pinMode(buzzer , OUTPUT

);.
4. The loop function will be executed for as long as the Arduino is powered on.

Once it finishes executing the commands within the function, it loops back to
the top of the function and continues again. On line 8, we use the tone function
to tell the buzzer to emit a tone. This function takes three values: the pin the
buzzer is connected to, the frequency of the tone, and the duration of the tone.
We pass the variable buzzer to define the pin and use the value 440 to define
a 440 Hz tone (or A3). The duration is given as 100 ms so the buzzer will emit
a 440 Hz tone for 0.1 seconds.

5. In order for us to hear the buzzer beeping instead of one long tone, we add
a delay function call on line 9 after we call the tone function. This will stop
the Arduino from continuing for a set amount of time. This time is defined in
milliseconds using the single value passed to it. In our example, we have told
the Arduino to wait for 200 milliseconds. This value is equal to the duration
of the tone plus 100 milliseconds. This small amount of time gives our ears
enough time to hear a pause between the tones so that we can hear the buzzer
beeping.

6. Now that we have written the program, we can verify that it is correct by click-
ing the checkmark button on the top left of the Arduino IDE. This button will
verify that we have written the code correctly by compiling the program and
checking for any syntax errors. The output will be shown in the area at the bot-
tom of the Arduino IDE. If you see any errors, go through the provided script
again to make sure you typed everything correctly.

7. Once we have verified that the program is correct, we can upload the program
to the Arduino. Plug the Arduino in to the computer using the USB cable and

CHAPTER 3. LEVEL 2 PROJECTS 20
click on the arrow button next to the checkmark button. This will initiate the
upload sequence to the Arduino. You can track the progress on the bottom of
the window. Once complete, the Arduino IDE will say “Done uploading.” at the
bottom of the editor above the output panel.

8. If you have connected the circuit correctly, you will hear the buzzer beeping
rapidly about five times per second. Since we haven’t added a way to turn it
o�, simply unplug one of the wires from the breadboard or unplug the Arduino
from the computer to remove power and stop it.

Circuit

Figure 3.2: Circuit representation for the programmable buzzer project.

CHAPTER 3. LEVEL 2 PROJECTS 21
Program

1 const uint8_t buzzer = 9;

2
3 void setup() {

4 pinMode(buzzer, OUTPUT);

5 }

6
7 void loop() {

8 tone(buzzer, 440, 100);

9 delay(200);

10 }

CHAPTER 3. LEVEL 2 PROJECTS 22
3.3 Mini Piano

Parts Required
• 1x Arduino + USB Cable
• 13x Wires
• 1x Breadboard
• 5x Pushbuttons
• 1x Buzzer

Steps
1. Place each of the pushbuttons so that they straddles the river on the breadboard.

The legs of the pushbuttons should be bending so that they are pointing perpen-
dicular (away from) the river.

2. Place the buzzer so that both legs are in separate rows on the breadboard away
from the pushbuttons and so that it is closer to the river so that there is room to
place wires next to it. It is recommended to place the legs of the buzzer in the
same column so that it is easier to tell where the legs are after placing it on the
breadboard. If you do it this way, there will be two empty rows in between the legs.

3. The pushbuttons are set up in what is known as “pull-down” mode. This means
that, when pressed, they are grounding whatever they are connected to. To do this
for each pushbutton, take a wire and place one end in the same row as one leg
of the button. Take the other end and plug it into the negative power rail on the
breadboard next to the blue line with the ‘-’ sign.

4. Take another wire and plug one end into the negative power rail and the other end
into one of the ports on the Arduino labeled “GND”.

5. For each of the pushbuttons, take a wire and place one end in the same row as the
empty leg of the pushbutton. From left to right, place the loose end of the wire into
the digital ports on the Arduino labeled “6”, “5”, “4”, “3”, and “2”. These are the
ports that will read the pushbutton to determine if we are pressing it.

6. To connect the buzzer, take one wire and place one end in the same row as the short
leg of the buzzer and the other end in the negative power rail of the breadboard.

CHAPTER 3. LEVEL 2 PROJECTS 23
Take a second wire and place one end in the same row as the long leg of the buzzer
and the other end in the port labeled “9” on the Arduino Uno. This is the port that
will control the frequency, or tone, of the buzzer to make the piano sounds.

7. Now that the circuit is built, go through the code in the Program section, load it
into the Arduino IDE, and upload it to your Arduino Uno.

Circuit

Figure 3.3: Circuit representation for the mini piano project.

CHAPTER 3. LEVEL 2 PROJECTS 24
Program

1 // Define the frequencies for each

2 // of the buttons representing

3 // keys on a piano.

4 #define FREQ_C 262

5 #define FREQ_D 294

6 #define FREQ_E 330

7 #define FREQ_F 349

8 #define FREQ_G 392

9
10 // Set the input ports connected

11 // to each of the buttons as constant

12 // values, meaning they can not be changed.

13 const int C = 6;

14 const int D = 5;

15 const int E = 4;

16 const int F = 3;

17 const int G = 2;

18
19 // Set the output port connected

20 // to the buzzer.

21 const int buzzer = 9;

22
23 // Create variables to calculate

24 // the total frequency of the pressed buttons

25 // and track the number of buttons pressed.

26 uint16_t frequency = 0;

27 uint8_t count = 0;

28
29 void setup()

30 {

31 /* Set all of the ports connected

32 * to the pushbuttons as inputs.

33 *

CHAPTER 3. LEVEL 2 PROJECTS 25
34 * Drive all of them high initially

35 * so they are turned off to start.

36 */

37 pinMode(C, INPUT);

38 digitalWrite(C,HIGH);

39
40 pinMode(D, INPUT);

41 digitalWrite(D,HIGH);

42
43 pinMode(E, INPUT);

44 digitalWrite(E,HIGH);

45
46 pinMode(F, INPUT);

47 digitalWrite(F,HIGH);

48
49 pinMode(G, INPUT);

50 digitalWrite(G,HIGH);

51 }

52
53 void loop()

54 {

55 // Reset the frequency sum and

56 // count of buttons pressed.

57 frequency = 0;

58 count = 0;

59
60
61 /* Go through each of the pushbutton

62 * inputs and check if they are pressed.

63 * If pressed, add the frequency of the

64 * selected note and increment the count

65 * of buttons pressed.

66 */

67 if(digitalRead(C) == LOW)

CHAPTER 3. LEVEL 2 PROJECTS 26
68 {

69 frequency += FREQ_C;

70 count++;

71 }

72
73 if(digitalRead(D) == LOW)

74 {

75 frequency += FREQ_D;

76 count++;

77 }

78
79 if(digitalRead(E) == LOW)

80 {

81 frequency += FREQ_E;

82 count++;

83 }

84
85 if(digitalRead(F) == LOW)

86 {

87 frequency += FREQ_F;

88 count++;

89 }

90
91 if(digitalRead(G) == LOW)

92 {

93 frequency += FREQ_G;

94 count++;

95 }

96
97
98 /* If there are any buttons pressed,

99 * take the average of the frequency

100 * and turn the buzzer on.

101 * Otherwise, turn the buzzer off.

CHAPTER 3. LEVEL 2 PROJECTS 27
102 */

103 if(count)

104 {

105 frequency /= count;

106 tone(buzzer, frequency);

107 }

108 else

109 {

110 noTone(buzzer);

111 }

112
113 }

CHAPTER 3. LEVEL 2 PROJECTS 28
3.4 Logic Gates

Parts Required
• 1x Arduino + USB Cable
• 2x Wires
• 1x Breadboard
• 2x Slide Switch
• 1x LED
• 1x Resistor
• 1x Quad Logic IC (AND 7408, OR 7432, or NAND 7400)

A two input OR gate produces a true or high output when either one or the other input is
true or high. A two input AND gate produces a true or high output only when both inputs
are true or high. A two input NAND gate produces the opposite response of an AND gate.
By connecting the inputs of a logic gate to a switch between high and low voltage (‘5V’
and ‘GND’ on the Arduino) and the output to an LED, we can observe how changing the
switch positions will cause the LED to light up or remain o�. Each 14-pin AND/OR/NAND
logic gate has 4 two input gates inside.

a

b
f(a, b)

(a) AND Gate
a

b
f(a, b)

(b) OR Gate
a

b
f(a, b)

(c) NAND Gate
Figure 3.4: Logic Gate Symbols

a b f(a,b)0 0 00 1 01 0 01 1 1
(a) AND

a b f(a,b)0 0 00 1 11 0 11 1 1
(b) OR

a b f(a,b)0 0 10 1 11 0 11 1 0
(c) NAND

Table 3.1: Logic Gate Truth Tables

Steps
1. Place the IC chip so that it straddles the river on the breadboard. Note that the

indentation on the chip signifies the start of the pin numbers.

CHAPTER 3. LEVEL 2 PROJECTS 29
2. Place the LED so that the short leg is in the negative power rail (next to the blue

line) and the long leg is in a row by itself.
3. Place one of the resistors so that one leg is in the same row as the long leg of the

LED and the other leg connects to the output of a logic gate on the IC chip (pin 3
in the diagram).

4. Place both slide switches so that all three pins are in their own row.
5. For each switch, use a resistor to connect the first pin to the power rail (next to the

red line). Use a wire to connect the last pin to the negative power rail (next to the
blue line). The middle pin will connect to the logic gate inputs (pins 1 and 2 for the
logic gate in the diagram).

6. To supply the IC chip with power, take one wire and connect the power rail to the
Vcc input on the chip (pin 14 in the diagram). Take another wire and connect the
negative power rail to the GND input on the IC chip (pin 7 in the diagram).

7. To power the circuit, take one wire and plug it into the “5V” port on the Arduino.
Place the other end of the wire into the power rail on the breadboard (next to the
red line).

8. To complete the circuit, take the second wire and plug it into the “GND” port on the
Arduino. Place the other end in the negative power rail on the breadboard (next to
the blue line).

9. Plug the Arduino into your computer’s USB port to turn power on. Adjust the slide
switches to turn each logic gate input ‘ON’ and ‘OFF’ and observe when the LED
remains o� or lights up.

10. Replace the IC chip with a di�erent logic gate chip and observe the new response.

CHAPTER 3. LEVEL 2 PROJECTS 30
Circuit

Figure 3.5: Circuit representation for the logic gate project.

CHAPTER 4. LEVEL 3 PROJECTS 31

4 Level 3 Projects

4.1 Ultrasonic Security System

Parts Required
• 1x Arduino + USB Cable
• 8x Wires
• 1x Breadboard
• 1x Ultrasonic Sensor HC-SR04
• 1x Buzzer
• 1x LED
• 1x 330-Ω Resistor

Steps
• Building the Circuit

1. Place the ultrasonic sensor so that each of the four legs are in a di�erent row
on the breadboard. Make sure that the sensor is facing away from the Arduino
and any wires so that it does not get any false readings and sound the alarm
because of the Arduino or the wires.

2. Place the buzzer so that the two pins are in separate, empty rows on the bread-
board.

3. Place the resistor so that one leg is in the same row as the short leg of the
buzzer and the other leg is in an empty row on the breadboard.

4. Place the LED so that the anode (long leg) is in an empty row on the breadboard
and the cathode (short leg) is in the same row as the second leg of the resistor
from the previous step.

5. Take one wire and plug one end into port “13” on the Arduino. Plug the other
end into a hold on the breadboard in the same row as the port labeled “Trig”
on the ultrasonic sensor.

CHAPTER 4. LEVEL 3 PROJECTS 32
6. Take a second wire and plug one end into port “12” on the Arduino. Plug the

other end into a hold on the breadboard in the same row as the port labeled
“Echo” on the ultrasonic sensor.

7. To control the LED, we take the third wire and plug one end into port “8” on
the Arduino and the other end into the same row as the anode (long leg) of
the LED on the breadboard.

8. To control the buzzer, plug one end of the fourth into port “9” on the Arduino
and the other end into the same row as the long leg of the buzzer on the
breadboard.

9. To connect the LED and buzzer to the ground reference, take the fifth wire and
plug one end into the negative power rail on the breadboard. Plug the other
end into a hole in the breadboard in the row with the short leg of the buzzer
and one leg of the resistor.

10. To connect the ultrasonic sensor to the ground reference, plug one end of the
sixth wire into the breadboard in the same row as the sensor’s “Gnd” port and
the other end into the negative power rail.

11. To power the sensor, take the seventh wire and plug one end into the bread-
board in the same row as the ultrasonic sensor’s “Vcc” port and the other end
into the Arduino’s “5V” port.

12. To complete the circuit, take the eighth wire and plug one end into one of the
Arduino’s “GND” ports and plug the other end into any hold in the negative
power rail on the breadboard.

13. Once you have built the circuit, continue on to the Arduino steps to program
the device.

• Writing the Program

1. Create a new project in the Arduino IDE and copy and paste the code in the
following Program section.

2. Make sure you have the HCSR04 (the part number for the ultrasonic sensor in
your kit) library installed in the Library Manager by selecting the menu options
Tools > Manage Libraries... or pressing Ctrl+Shift+I. In the filter search
bar, type in “HCSR04”. Scroll down until you see the entry labeled “HCSR04”

CHAPTER 4. LEVEL 3 PROJECTS 33
with the author name “Martin Sosic”. There are many possible libraries we can
use with the ultrasonic sensor, each with slightly di�erent syntax, but this is
the library we are using for the example. If you have the library installed, it will
say “INSTALLED” next to the version number. Otherwise, hover over the entry
and click “Install” in the bottom right corner. You can now close the Library
Manager.

3. To verify that the library installed correctly, click on the checkmark icon in the
top left to compile the program. If everything is installed correctly, you will see
the message “Done compiling” in the output box at the bottom of the screen.
If you see an error, check that you copied the provided program correctly and
that the library has been installed.

4. Before you upload the program to the Arduino, make sure you read through
the program and understand what it is doing. The code below is commented
(lines that start with two forward slashes //) to show you what it is doing. The
following is a description of how the code works. Once you are done, continue
on to Step 5.

– Line 1 includes the HCSR04 library so that we can use the functions pro-
vided by it to read data from our ultrasonic sensor.

1 #include <HCSR04.h>

– Lines 3 and 4 define the pins we connected the “Trig” and “Echo” pins to
on the Arduino. As described in the previous section, we have connected
those to pins 13 and 12, respectively.

3 const uint8_t trigger = 13; // Pin number connected to "Trig

".

4 const uint8_t echo = 12; // Pin number connected to "Echo

".

– Line 5 creates an object that represents our ultrasonic sensor. We need
to tell it which pins we connected the trigger and echo pins to so that it
knows where to send signals to talk to the sensor.

CHAPTER 4. LEVEL 3 PROJECTS 34

5 UltraSonicDistanceSensor distanceSensor(trigger, echo);

– Lines 7 and 8 define the pins where we have connected the buzzer and LED
to. In this case, we have connected them to pins 9 and 8, respectively.

7 const uint8_t buzzer = 9; // Pin number connected to buzzer

.

8 const uint8_t led = 8; // Pin number connected to LED.

– Line 9 defines our alert threshold range in centimeters. By default, we have
set this to 10 centimeters, but you can change this to any whole number
greater than 0. However, the sensor may not be able to pick up very far or
very short distances, so you may want to leave this value between 5 and
20 centimeters.

9 const uint8_t threshold = 10; // Threshold in centimeters.

– In the setup function from line 12 to 17, we first initialize our serial com-
munication with baudrate (the speed at which the data is sent) 9600 bits
per second (bps) so that we can send messages from the Arduino back
to the serial monitor. This allows us to see on the computer the output of
our program. We then define the pin mode for the pins connected to the
buzzer and the LED as output modes so that we can turn them on and o�.

12 // Start serial communication using baudrate 9600.

13 Serial.begin(9600);

14
15 // Set the buzzer and LED pin modes as output.

16 pinMode(buzzer, OUTPUT);

17 pinMode(led, OUTPUT);

– The loop() function is the main brains of our program and it loops con-
tinuously as long as the Arduino is powered on.

CHAPTER 4. LEVEL 3 PROJECTS 35
– The first thing we do on line 22 is to read the distance to the nearest object

in front of the ultrasonic sensor in centimeters. We do this by calling the
measureDistanceCm () function that is a part of the ultrasonic sensor
object we defined on line 5. We store this value as a double (meaning it is
a fractional number, e.g., 5.2, 10.6, etc.) in the variable distance.

21 // Read the distance in centimeters.

22 double distance = distanceSensor.measureDistanceCm();

– We want to send this information back to the computer so we can see what
the sensor is reading. To do this, we use the serial communication to first
print out the string “Distance: ” on line 26. We then print the decimal
value of the distance in centimeters on line 27. Finally, we provide the
units of the measurement on line 28 by printing out “ cm”. For this last
one, we use the println () function (where ln stands for line) so that
our cursor goes to the next line after we display the information. This way
each measurement can be shown on a separate line.

25 // Print out the distance to the Serial Monitor.

26 Serial.print("Distance: ");

27 Serial.print(distance);

28 Serial.println(" cm");

– The if statement on line 33 contains our alert logic. In this statement we
are first checking that our distance measurement is valid (meaning that it
is a positive value greater than zero: distance > 0). We need to check
this because, if there is nothing close to the sensor, we don’t read anything
and the output value is -1.0.

31 // Check that we have a valid reading and the distance

32 // is within our alert threshold.

33 if(distance > 0 && distance < threshold)

– If we have a valid distance value, we want to also check if the object is
within the alert range. We do this by first using the syntax “&&” meaning

CHAPTER 4. LEVEL 3 PROJECTS 36
“and”. The second condition is that the distance is less than the threshold
range we set on line 9. Line 33 can be read in English as “if distance is
greater than 0 AND distance is less than threshold, then do the following”.
The “following” means we will execute the commands on lines 35 through
46 if the distance is greater than 0 and is less than our threshold alert
range.

– When we sense an object within our alert range, we want to buzz the
buzzer and blink the LED. To do this, we first turn on the buzzer for 100
milliseconds with a frequency of 440 Hz on line 36 using the tone() com-
mand. We also turn the LED on on line 37. We then wait 100 milliseconds
on line 40 so we can see the LED turn on, then we turn the LED o� on line
43. We then wait another 100 milliseconds on line 46 so that our eyes
can recognize that the LED has turned o�. Otherwise, the code might go
so fast that we can not register that the LED is blinking.

35 // Turn the buzzer and the LED on.

36 tone(buzzer, 440, 100);

37 digitalWrite(led, HIGH);

38
39 // Wait for 100 milliseconds.

40 delay(100);

41
42 // Turn the LED off.

43 digitalWrite(led, LOW);

44
45 // Wait for 100 milliseconds.

46 delay(100);

– After the alert actions have been executed, or if there was no object within
the alert range, we go back to the beginning of the loop function, check
the distance again on line 22, and start the process all over again for as
long as the Arduino is on.

5. Plug the Arduino into your computer and make sure the correct port and board
options are selected under the Tools menu. Open the Serial Monitor using

CHAPTER 4. LEVEL 3 PROJECTS 37
the menu options Tools > Serial Monitor or by pressing Ctrl+Shift+M. This
way we can see the output from the code as soon as it is done uploading.

6. Upload the program to the Arduino by clicking on the right arrow icon in the
top left, by pressing Ctrl+U, or by selecting the menu option Sketch > Upload.
The program will take a few seconds to upload and then you should see out-
put on the Serial Monitor. If you move within the threshold alert range (the
default provided in the program is 10 centimeters), the LED will blink and the
buzzer will buzz at you. To change the threshold range, change the value of
the threshold variable in the code to the desired value in centimeters.

Circuit

Figure 4.1: Circuit representation for the ultrasonic security project.

CHAPTER 4. LEVEL 3 PROJECTS 38
Script

1 #include <HCSR04.h>

2
3 const uint8_t trigger = 13; // Pin number connected to "Trig".

4 const uint8_t echo = 12; // Pin number connected to "Echo".

5 UltraSonicDistanceSensor distanceSensor(trigger, echo);

6
7 const uint8_t buzzer = 9; // Pin number connected to buzzer.

8 const uint8_t led = 8; // Pin number connected to LED.

9 const uint8_t threshold = 10; // Threshold in centimeters.

10
11 void setup() {

12 // Start serial communication using baudrate 9600.

13 Serial.begin(9600);

14
15 // Set the buzzer and LED pin modes as output.

16 pinMode(buzzer, OUTPUT);

17 pinMode(led, OUTPUT);

18 }

19
20 void loop() {

21 // Read the distance in centimeters.

22 double distance = distanceSensor.measureDistanceCm();

23
24
25 // Print out the distance to the Serial Monitor.

26 Serial.print("Distance: ");

27 Serial.print(distance);

28 Serial.println(" cm");

29
30
31 // Check that we have a valid reading and the distance

32 // is within our alert threshold.

33 if(distance > 0 && distance < threshold)

CHAPTER 4. LEVEL 3 PROJECTS 39
34 {

35 // Turn the buzzer and the LED on.

36 tone(buzzer, 440, 100);

37 digitalWrite(led, HIGH);

38
39 // Wait for 100 milliseconds.

40 delay(100);

41
42 // Turn the LED off.

43 digitalWrite(led, LOW);

44
45 // Wait for 100 milliseconds.

46 delay(100);

47 }

48 }

CHAPTER 5. LEVEL 4 PROJECTS 40

5 Level 4 Projects

5.1 TFT Etch-a-Sketch

Parts Required
• 1x Arduino + USB Cable
• 18x Wires
• 1x Breadboard
• 1x 1.8” TFT Display
• 1x Pushbutton
• 2x Potentiometer
• 1x 1k-Ω Resistor

Steps
• Building the Circuit

1. Place the 1.8” TFT Display so that all eight pins are in separate, empty rows
on the breadboard.

2. Place one potentiometer so that all three pins are in separate, empty rows on
the breadboard to one side of the TFT display.

3. Place the second potentiometer so that all three pins are in separate, empty
rows on the breadboard to the other side of the TFT display.

4. Place the pushbutton so that it straddles the river in the center of the bre-
aboard and all four pins are in empty rows.

5. Connect the TFT display as shown in Figure 5.1. The pins are labeled as follows
from left to right with the screen facing up: “LED”, “SCK”, “SDA”, “A0”, “RE-
SET”, “CS”, “GND”, “VCC”. The labels shown in the figure are the same as those
on the bottom of the display provided in the kit. The wiring connections to the
Arduino are shown in Table 5.1. The “GND” and “VCC” pins are connected to
the negative and positive power rails on the breadboard, respectively.

CHAPTER 5. LEVEL 4 PROJECTS 41
TFT Pin Arduino PortLED 3.3 VSCK 13SDA 11A0 9RESET 8CS 10

Table 5.1: 1.8” TFT wiring connections to the Arduino Uno.
6. On both potentiometers, connect wires in the following manner:

– Take the first wire and plug one end into a hole in the positive power rail on
the breadboard. Plug the other end into a hole in the same row as either
the left or right pin on the potentiometer.

– Take the second wire and plug one end into a hole in the negative power
rail on the breadboard. Plug the other end into a hole in the same row as
the opposite pin on the potentiometer that you used for the first wire.

– Take the third wire and plug one end into pin “A0” for the left potentiome-
ter or “A1” for the right potentiometer. Plug the other end into a hole in
the same row as the center pin on the potentiometer. Note that the po-
tentiometer plugged into “A0” will control the movement along the longer
axis of the display and the potentiometer plugged into “A1” will control
movement along the shorter axis of the display.

7. To connect the pushbutton, take one wire and plug one end into a hole in the
positive power rail on the breadboard. Plug the other end into the same row
as one of the pins on the pushbutton. Take a second wire and plug one end
into pin “2” on the Arduino. Plug the other end into a hole in the same row as
the second pin on the pushbutton.

8. Take the 1-kΩ resistor and plug one leg into a hole in the same row as the
wire connecting the pushbutton to pin “2” from the last step. Plug the other
leg into the negative power rail on the breadboard. This resistor is known as
a pull-down resistor that pulls the signal into pin “2” down to ground so that
the Arduino program can recognize the button as not pressed. If we don’t do
this, the output signal from the pushbutton is called floating, meaning it has

CHAPTER 5. LEVEL 4 PROJECTS 42
no defined value. This can potentially result in the Arduino thinking the button
is pressed when it is not, erasing our drawings.

9. Once everything is connected, we want to power our circuit by plugging one
end of another wire into the “5V” pin on the Arduino and the other end into the
positive power rail on the breadboard. Complete the circuit by taking another
wire and plugging one end into one of the “GND” pins and plug the other end
into the negative power rail on the breadboard.

10. Now that the circuit is built, go to your computer, open the Arduino IDE, and
proceed to the next section to write the Etch-a-Sketch program.

CHAPTER 5. LEVEL 4 PROJECTS 43
Circuit

Figure 5.1: Circuit representation for the TFT Etch-a-Sketch project.

CHAPTER 5. LEVEL 4 PROJECTS 44
Script

1 #include <TFT.h> // Arduino LCD library

2 #include <SPI.h> // Communication with LCD

3
4
5 // Define pin connections for data

6 // transfer from the TFT display.

7 const uint8_t cs = 10; // ChipSselect

8 const uint8_t dc = 9; // Data/Command. A0 on our board.

9 const uint8_t rst = 8; // Reset

10
11
12 // Create an object representation of the TFT display.

13 TFT TFTscreen = TFT(cs, dc, rst);

14
15
16 // Define a new object type to represent a pixel point.

17 typedef struct

18 {

19 uint8_t x;

20 uint8_t y;

21 } Pixel;

22
23
24 // Create objects to track the current and last position.

25 Pixel currPnt;

26 Pixel lastPnt;

27
28
29 // pin the erase switch is connected to

30 const uint8_t erasePin = 2;

31
32 void setup() {

33 // Swap between RGB and BGR.

CHAPTER 5. LEVEL 4 PROJECTS 45
34 // Valid values: 0, 1

35 TFTscreen.invertDisplay(1);

36
37
38 // Set our cursor at the center of the screen.

39 currPnt.x = TFTscreen.width() / 2;

40 currPnt.y = TFTscreen.height() / 2;

41 lastPnt.x = TFTscreen.width() / 2;

42 lastPnt.y = TFTscreen.height() / 2;

43
44
45 // Set the pushbutton as an input signal.

46 pinMode(erasePin, INPUT);

47
48 // Initialize the screen

49 TFTscreen.begin();

50
51 // Make the background black

52 // using the RGB color (0, 0, 0).

53 TFTscreen.background(0, 0, 0);

54 }

55
56 void loop() {

57 // Read the potentiometers on A0 and A1

58 uint16_t xValue = analogRead(A0);

59 uint16_t yValue = analogRead(A1);

60
61
62 // Convert the input values to a valid range.

63 // The display is 160 pixels wide, so we take the

64 // x range 0 to 159.

65 // It is 128 pixels tall, so we take the

66 // y range 0 to 127.

67 currPnt.x = map(xValue, 0, 1023, 0, 159);

CHAPTER 5. LEVEL 4 PROJECTS 46
68 currPnt.y = map(yValue, 0, 1023, 0, 127);

69
70
71 // Draw the last point location white,

72 TFTscreen.stroke(255, 255, 255);

73 TFTscreen.point(lastPnt.x, lastPnt.y);

74
75
76 // Draw the current point location blue.

77 TFTscreen.stroke(255, 0, 0);

78 TFTscreen.point(currPnt.x, currPnt.y);

79
80
81 // Store the current location as the last location

82 // for the next iteration.

83 lastPnt.x = currPnt.x;

84 lastPnt.y = currPnt.y;

85
86
87 // Read the value of the pushbutton, and erase the screen if pressed

88 if(digitalRead(erasePin) == HIGH)

89 {

90 TFTscreen.background(0, 0, 0);

91 }

92
93 delay(33);

94 }

CHAPTER 5. LEVEL 4 PROJECTS 47
5.2 Pong

In this project we will create an Arduino based version of the classic video game Pong.
The controller inputs are built using a variable resistor or potentiometer and the on board
analog to digital converter of the Arduino. The court is rendered on the TFT display with
the TFT and SPI libraries.
Parts Required

• 1x Arduino + USB Cable
• 16x Wires
• 1x Breadboard
• 1x 1.8” TFT Display
• 2x Potentiometer

Steps
• Building the Circuit

1. Place the 1.8” TFT Display so that all eight pins are in separate, empty rows
on the breadboard.

2. Place one potentiometer so that all three legs are in separate, empty rows on
the breadboard to one side of the TFT display.

3. Place the second potentiometer so that all three legs are in separate, empty
rows on the breadboard to the other side of the TFT display.

4. Connect the TFT display as shown in Figure 5.1. The pins are labeled as follows
from left to right with the screen facing up: “LED”, “SCK”, “SDA”, “A0”, “RE-
SET”, “CS”, “GND”, “VCC”. The labels shown in the figure are the same as those
on the bottom of the display provided in the kit. The wiring connections to the
Arduino are shown in Table 5.1. The “GND” and “VCC” pins are connected to
the negative and positive power rails on the breadboard, respectively.

CHAPTER 5. LEVEL 4 PROJECTS 48
TFT Pin Arduino PortLED 3.3 VSCK 13SDA 11A0 9RESET 8CS 10

Table 5.2: 1.8” TFT wiring connections to the Arduino Uno.
5. On both potentiometers, connect wires in the following manner:

– Take the first wire and plug one end into a hole in the positive power rail on
the breadboard. Plug the other end into a hole in the same row as either
the left or right leg on the potentiometer.

– Take the second wire and plug one end into a hole in the negative power
rail on the breadboard. Plug the other end into a hole in the same row as
the opposite leg on the potentiometer that you used for the first wire.

– Take the third wire and plug one end into port “A0” for the left poten-
tiometer or “A1” for the right potentiometer. Plug the other end into a
hole in the same row as the center leg on the potentiometer. Note that
the potentiometer plugged into “A0” will control the movement of the first
players paddle and the potentiometer plugged into “A1” will control the
movement of the 2nd players paddle.

6. Once everything is connected, we want to power our circuit by taking another
wire and plugging one end into the “5V” port on the Arduino and the other end
into the positive power rail on the breadboard. Complete the circuit by taking
another wire and plugging one end into one of the “GND” ports and plug the
other end into the negative power rail on the breadboard.

7. Now that the circuit is built, go to your computer, open the Arduino IDE, and
proceed to the next section to write the Pong program and upload it to your
Arduino Uno.

CHAPTER 5. LEVEL 4 PROJECTS 49
Circuit

Figure 5.2: Circuit representation for the Pong project.

CHAPTER 5. LEVEL 4 PROJECTS 50
Script

1 #include <TFT.h> // Arduino LCD library

2 #include <SPI.h> // Communication with LCD

3
4
5 // Define pin connections for data

6 // transfer from the TFT display.

7 #define cs 10 // ChipSselect

8 #define dc 9 // Data/Command. A0 on our board.

9 #define rst 8 // Reset

10
11
12 // Create an object representation

13 // of the TFT display.

14 TFT TFTscreen = TFT(cs, dc, rst);

15
16 // Create constants to remember the

17 // size of the TFT screen.

18 const uint8_t TFT_WIDTH = TFTscreen.height();

19 const uint8_t TFT_HEIGHT = TFTscreen.width();

20
21
22 // Create constants to set the size

23 // of the bar and the pong ball.

24 #define BAR_LENGTH 40

25 #define BAR_WIDTH 5

26 #define BAR_OFFSET 10

27
28
29 // Define a new object type to

30 // represent a player.

31 typedef struct

32 {

33 uint8_t barPosition;

CHAPTER 5. LEVEL 4 PROJECTS 51
34 uint8_t points;

35 } Player;

36
37
38 // Define constant radius

39 // and velocity of the ball.

40 #define BALL_RADIUS 3

41 #define BALL_VELOCITY 2

42
43 // Define a new object type to represent

44 // the pong ball.

45 typedef struct

46 {

47 uint8_t x;

48 uint8_t y;

49
50 uint8_t directionX;

51 uint8_t directionY;

52 } Ball;

53
54
55 // Create objects to track the two players

56 // and the pong ball.

57 Player playerLeft;

58 Player playerRight;

59 Ball ball;

60 unsigned long lastBallDraw;

61 uint8_t winner;

62
63
64 void setup() {

65 // Set the bars vertically

66 // in the middle.

67 playerLeft.barPosition = (TFT_HEIGHT / 2) - (BAR_LENGTH / 2);

CHAPTER 5. LEVEL 4 PROJECTS 52
68 playerRight.barPosition = (TFT_HEIGHT / 2) - (BAR_LENGTH / 2);

69
70 // Set scores to 0.

71 playerLeft.points = 0;

72 playerRight.points = 0;

73
74
75 // Set the pong ball in the center

76 // of the playing field.

77 ball.x = (TFT_WIDTH / 2);

78 ball.y = (TFT_HEIGHT / 2);

79 ball.directionX = 1;

80 ball.directionY = 0;

81
82
83 // Initialize the screen

84 TFTscreen.begin();

85 TFTscreen.setRotation(2);

86
87 // Make the background black

88 // using the RGB color (0, 0, 0).

89 TFTscreen.background(0, 0, 0);

90
91
92 drawBars(playerLeft.barPosition, playerRight.barPosition);

93 drawBall();

94 lastBallDraw = millis();

95 }

96
97 void loop() {

98 // Read the potentiometers on A0 and A1

99 uint8_t rightPos = map(analogRead(A1), 0, 1023, 0, TFT_HEIGHT - 1 -

BAR_LENGTH);

CHAPTER 5. LEVEL 4 PROJECTS 53
100 uint8_t leftPos = map(analogRead(A0), 0, 1023, 0, TFT_HEIGHT - 1 -

BAR_LENGTH);

101
102 drawBars(rightPos, leftPos);

103 drawScore();

104
105 if(millis() - lastBallDraw > 10)

106 {

107 if(winner = drawBall())

108 {

109 if(winner == 1)

110 playerLeft.points++;

111 else

112 playerRight.points++;

113
114
115 ball.x = TFT_WIDTH / 2;

116 ball.y = TFT_HEIGHT / 2;

117 TFTscreen.background(0, 0, 0);

118
119 drawScore();

120
121 delay(500);

122
123 playerLeft.barPosition = -10;

124 playerRight.barPosition = -10;

125 drawBars(rightPos, leftPos);

126 drawBall();

127
128 delay(500);

129 }

130 lastBallDraw = millis();

131 }

132 }

CHAPTER 5. LEVEL 4 PROJECTS 54
133
134 void drawBars(uint8_t rightPos, uint8_t leftPos) {

135 // If the new position has not moved significantly

136 // from the previous position, don’t write it again

137 // to prevent any stuttering on the screen.

138 if(abs(leftPos - playerLeft.barPosition) > 3)

139 {

140 // Clear the current bars.

141 TFTscreen.fill(0, 0, 0);

142 TFTscreen.rect(0 + BAR_OFFSET, playerLeft.barPosition,

143 BAR_WIDTH, BAR_LENGTH);

144
145
146 // Calculate the new position of the

147 // left player’s barand then draw it.

148 uint8_t startX = 0 + BAR_OFFSET;

149 uint8_t startY = leftPos;

150
151 TFTscreen.fill(255, 255, 255);

152 TFTscreen.rect(startX, startY, BAR_WIDTH, BAR_LENGTH);

153
154
155 // Set the new bar position for the left player.

156 playerLeft.barPosition = leftPos;

157 }

158
159
160 if(abs(rightPos - playerRight.barPosition) > 3)

161 {

162 // Clear the current bars.

163 TFTscreen.fill(0, 0, 0);

164 TFTscreen.rect(TFT_WIDTH - BAR_OFFSET, playerRight.barPosition,

165 BAR_WIDTH, BAR_LENGTH);

166

CHAPTER 5. LEVEL 4 PROJECTS 55
167
168 // Calculate the new position of the

169 // left player’s barand then draw it.

170 uint8_t startX = TFT_WIDTH - BAR_OFFSET;

171 uint8_t startY = rightPos;

172
173 TFTscreen.fill(255, 255, 255);

174 TFTscreen.rect(startX, startY, BAR_WIDTH, BAR_LENGTH);

175
176
177 // Set the new bar position for the right player.

178 playerRight.barPosition = rightPos;

179 }

180
181 return;

182 }

183
184 uint8_t drawBall() {

185 // Calculate new location.

186 int16_t newX = ball.x + (ball.directionX ? BALL_VELOCITY : -BALL_VELOCITY

);

187 int16_t newY = ball.y + (ball.directionY ? BALL_VELOCITY : -BALL_VELOCITY

);

188
189 // Check if the ball is hitting the

190 // right or leftborder of the screen.

191 if(newX >= TFT_WIDTH - BALL_RADIUS)

192 {

193 ball.directionX = !ball.directionX;

194 newX = TFT_WIDTH / 2;

195 newY = TFT_HEIGHT / 2;

196 return 1;

197 }

198 else if(newX < 0 + BALL_RADIUS)

CHAPTER 5. LEVEL 4 PROJECTS 56
199 {

200 ball.directionX = !ball.directionX;

201 newX = TFT_WIDTH / 2;

202 newY = TFT_HEIGHT / 2;

203 return 2;

204 }

205
206 // Check if the ball is hitting the

207 // top or bottom of the screen.

208 if(newY >= TFT_HEIGHT - BALL_RADIUS)

209 {

210 ball.directionY = !ball.directionY;

211 newY = TFT_HEIGHT - BALL_RADIUS;

212 }

213 else if(newY < 0 + BALL_RADIUS)

214 {

215 ball.directionY = !ball.directionY;

216 newY = 0 + BALL_RADIUS;

217 }

218
219 // Check if the ball is within the

220 // left or right player’s bar.

221 if((newX - BALL_RADIUS >= BAR_OFFSET && newX - BALL_RADIUS <= BAR_OFFSET

+ BAR_WIDTH) &&

222 (newY + BALL_RADIUS >= playerLeft.barPosition && newY + BALL_RADIUS

<= playerLeft.barPosition + BAR_LENGTH))

223 {

224 ball.directionX = !ball.directionX;

225 }

226 else if((newX + BALL_RADIUS >= TFT_WIDTH - BAR_OFFSET - BAR_WIDTH &&

newX + BALL_RADIUS <= TFT_WIDTH - BAR_OFFSET) &&

227 (newY - BALL_RADIUS >= playerRight.barPosition && newY -

BALL_RADIUS <= playerRight.barPosition + BAR_LENGTH))

228 {

CHAPTER 5. LEVEL 4 PROJECTS 57
229 ball.directionX = !ball.directionX;

230 }

231
232 // Clear previous location.

233 TFTscreen.fill(0, 0, 0);

234 TFTscreen.circle(ball.x, ball.y, BALL_RADIUS);

235
236 // Update the ball’s location.

237 ball.x = newX;

238 ball.y = newY;

239
240 // Display new location.

241 TFTscreen.fill(255, 255, 255);

242 TFTscreen.circle(ball.x, ball.y, BALL_RADIUS);

243
244 return 0;

245 }

246
247 void drawScore() {

248 char score[2];

249 TFTscreen.stroke(255, 255, 255);

250
251 sprintf(score, "%02d", playerLeft.points);

252 TFTscreen.text(score, BAR_OFFSET + BAR_WIDTH, 0);

253
254 sprintf(score, "%02d", playerRight.points);

255 TFTscreen.text(score, TFT_WIDTH - BAR_OFFSET - BAR_WIDTH, 0);

256
257 TFTscreen.stroke(0, 0, 0);

258 }

	Welcome to the Future Innovators Workshop
	Revision History
	Introduction
	Arduino
	Arduino IDE
	Breadboard
	Voltage
	Current
	Resistance
	Oscilloscope
	Integrated Circuit (IC)

	Level 1 Projects
	Pushbutton LED
	Tunable LED Brightness

	Level 2 Projects
	Basic Buzzer
	Programmable Buzzer
	Mini Piano
	Logic Gates

	Level 3 Projects
	Ultrasonic Security System

	Level 4 Projects
	TFT Etch-a-Sketch
	Pong

